ImitAL: Learned Active Learning Strategy on Synthetic Data

نویسندگان

چکیده

Active Learning (AL) is a well-known standard method for efficiently obtaining annotated data by first labeling the samples that contain most information based on query strategy. In past, large variety of such strategies has been proposed, with each generation new increasing runtime and adding more complexity. However, to best our knowledge, none these excels consistently over number datasets from different application domains. Basically, existing AL are combination two simple heuristics informativeness representativeness, big differences lie in often conflicting heuristics. Within this paper, we propose ImitAL, domain-independent novel strategy, which encodes as learning-to-rank problem learns an optimal between both We train ImitAL large-scale simulated runs purely synthetic datasets. To show was successfully trained, perform extensive evaluation comparing strategy 13 datasets, wide range domains, 7 other strategies.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Active Learning from Real and Synthetic Data

In this paper, we suggest a novel data-driven approach to active learning (AL). The key idea is to train a regressor that predicts the expected error reduction for a candidate sample in a particular learning state. By formulating the query selection procedure as a regression problem we are not restricted to working with existing AL heuristics; instead, we learn strategies based on experience fr...

متن کامل

the impact of generative learning strategy use on efl learners’ reading achievement and critical thinking

این پژوهش کوشیده است تأثیر به کارگیری راهبردهای زایا را بر پیشرفت و بسندگی در خواندن و درک مطلب و نیز بر تفکر انتقادی زبان آموزان انگلیسی را بررسی کند. در این پژوهش تعداد 46 دانش آموز دختر در مقطع متوسطه اول به صورت تصادفی انتخاب وبه دو گروه تجربی و شاهد با تعداد دانش آموزان مساوی در هر گروه تقسیم شدند. به هر دو گروه سه داستان کوتاه به عنوان موضوع خواندن برای کلاس داده شد. به گروه تجربی درابتدا...

Dual Strategy Active Learning

Active Learning methods rely on static strategies for sampling unlabeled point(s). These strategies range from uncertainty sampling and density estimation to multi-factor methods with learn-onceuse-always model parameters. This paper proposes a dynamic approach, called DUAL, where the strategy selection parameters are adaptively updated based on estimated future residual error reduction after e...

متن کامل

Learning Active Learning from Data

In this paper, we suggest a novel data-driven approach to active learning (AL). The key idea is to train a regressor that predicts the expected error reduction for a candidate sample in a particular learning state. By formulating the query selection procedure as a regression problem we are not restricted to working with existing AL heuristics; instead, we learn strategies based on experience fr...

متن کامل

On Active Learning for Data Acquisition

Many applications are characterized by having naturally incomplete data on customers – where data on only some fixed set of local variables is gathered. However, having a more complete picture can help build better models. The naïve solution to this problem – acquiring complete data for all customers – is often impractical due to the costs of doing so. A possible alternative is to acquire compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-18840-4_4